Ac Losses in Coated Conductors

Steve Ashworth Los Alamos National Laboratory

\$300k FY03/04

Presentation Message

- Intended Message
 - The ac losses of coated conductors (CC) present a serious problem for applications.
 - "global" losses >>> economics
 - Quenching
 - Present research directions ("higher I_c and/or J_c") will not solve this problem

Presentation Outline

Outline

- Advances in loss measurement techniques
- Data on 'standard' CC
 - What we have and what is needed
- Data/Models for increased J_c or reduced width CC
 - Each is not enough, together may be
- Data on Filamentary CC
 - Not the solution
- Some ideas to reduce losses
 - No solution as yet though
- Continuous measurement of losses on long samples
- Quench studies
- Plans/Performance/Goals

Measurment Techniques: Losses due to Magnetic Fields

- Sample extend beyond end of magnet coils
 - Flux cannot enter from ends of sample
- Pick up coils extend above, to the side of sample
 - Capture all "loss" signal
 - System does not need calibrating
- Also extended to continuous measurement on 5m samples

Measurement Techniques: Losses due to Magnetic Fields AND Transport Currents

Aim

- Reduce sample change time from 1 day to 1 hour
- Recover samples after measure

How

- Commercial thermocouple
- Pressure contact not adhesive
- No fixed thermal insulation
- Frozen alcohol bath
 - Evaporates after use
- Reduced sensitivity but adaquate for these purposes

Results: Magnetic AC Losses

- High sensitivity
- Agrees well with 'Brandt' calculations for strips in field
 - No adjustable parameters
- 10mm wide IBAD CC
 - Perpendicular Field
 - 100A critical current
 - $J_C = 1MA/cm^2$
 - 60Hz data, 75K
- Note "full" penetration at 10mT
- Feature of '2D' system
 - Aspect ratio 10⁴:1

Results: Calorimetric Losses

- Lower sensitivity
- Slower measurement
- Allows current + field
- 10mm wide IBAD CC
 - 100A critical current
 - $J_C = 1MA/cm^2$
 - 60Hz data, 75K
- Good approximation Loss=
 - Current loss +
 - Field loss
- Note above 5mT, losses are field dominated

ac Losses: The Problem

- For applications
 - Power cable
 - ac field 20mT
 - "DC" generator/motor
 - Ripple 20mT+
 - Transformer
 - ac field >0.1T
 - ac gen..
 - Ac field 1T?
- Losses way too high for economy
- Bigger problem
 - Quenching (see later)

Model: What happens if we increase J_c?

Calculation

- 10mm wide
- Carrying 80A (80% of $I_{\rm C}$ for 1MA/cm²)
- Brandt theory for losses in strip
- "transport" (low field) losses reduce significantly
- Field dominated losses (>3mT) don't reduce as much
- This isn't going to be the whole solution
- Good news: higher J_C takes away the need to transpose if we make filaments

Data: Reducing tape width reduces losses

- Concentrate on magnetic field dominated region
- Losses at any given field reduce
- Square law

Changing width: not quite as good as it seems

- To carry a required current
- Reducing width >> more tape eg
 - 1 x 10mm tape
 - 10 x 1mm tape
- How do losses scale for fixed current carrying capacity?
- Losses now reduce linearly with width

Model: Change Jc and width the answer?

- Increasing Jc
 - decreases "transport" losses (<3mT)
- Reducing width
 - decreases "magnetic" losses
 - Moves field dominated region to right
- Still not getting to 0.1T region fro 1mm tape
- 0.1W/m still too high
- Reduce width further > filaments

Do filaments reduce losses?

- Reduce effective width
- Only works if all filaments see identical fields
- Short samples OK
 - Field comes in from 'ends'
- If sample is long, doesn't work
- Field cannot get into space between HTS during ac cycle
- Usual solution is to 'twist'
 - Not easy in tapes
 - Effective J_C reduces

Data: Filaments alone do not reduce losses in long samples

- IGC samples
- Simulate long samples with 'incomplete' filaments
- HTS 'blocks' flux entry from ends of sample
- Filaments do not reduce losses
- After measurement cut 'block'
- Losses reduce
- Reduced loss from filaments alone is 'experimental' artifact

Other ways of reducing ac loss? Shaping samples

- Can we get away from "2D"
 - Very high fields at the tape edge
 - Bend edges to reduce perpendicular field
- Reduces losses at high field
- Increases at low field
- Reduction isn't any more than simply reducing tape width

Other ways of reducing losses: twist

- Twisted filaments
 - 10mm wide tape
 - Cut to 5 filaments
 - Cut through substrate also
 - Twist to complete pitch
- · Loss reduced at high field
- Engineering current density significantly reduced
- Proof of principle
- Not a practical method

Reduce losses: Filaments and Bridges

- Filaments reduce losses if field can move between them
 - OK on short samples
 - Not on long samples
- "Cut" allows field to move into filaments
 - But stops transport current
- "Bridge" cut with eg copper
- Reduce magnetic losses
 - 80A transport current
 - 1W/m reduced to 0.5W/m at 10mT
- Increase "resistive" losses
 - Extra 0.05W per "bridge"
- Bridges 1um wide...0.01W?

Conclusions: AC Losses

- 'Loss Measurement techniques
 - Adequate for purposes now
- 'Standard' CC
 - Not good enough
- Increased J_c or reduced width CC
 - Each is not enough, together may be
- Filamentary CC
 - Be careful with measurements
 - Not the solution
- Ideas to reduce losses
 - Some good possibilities
 - No solution as yet though

Reel to Reel AC Loss Measurements

- ac loss can
 - probe across width of sample
 - Local J_c
- Measure every 1cm
- Measurement length1cm
- Sweep ac field
 - 1mT to 25mT

Reel to Reel AC Loss Measurements: Data

- 3.2m sample
- 10mm wide
- 75K
- Ic vary between 20A and 100A

Moving ac Loss Measurements: Compare high and low field losses

- Low field: loss inversely proportional to J_C
- High field: loss increases with increasing J_C
- Interpretation needs more work and comparing with local I_c
 - I_cvaried on mm scale
 - How to compare with losses measured on cm scale

ac Loss Simulated Quenching

Basic Questions

- Can ac losses stimulate a quench?
- Where is boundary between stable and quench regimes

Experiment

- Apply ac current and ac magnetic field
- Liquid nitrogen
- Monitor temperature
- 100s and constant temperature >> "stable"
- If temperature increases, cut current at 100K

Experiment

- 60Hz field and current
- 60A peak current
- $I_{C} = 110A$

Stability boundary

- Well defined stability line
- Three data sets;
 - 5mm of frozen alcohol "thermal insulation"
 - <1mm alcohol</p>
 - Exposed to liquid nitrogen
- Stability line is same
- Difficult to quench below 20mT
 - Recall "penetration" field

ac Losses: conclusions

- The losses in coated conductors are presently too high
 - This is a problem for economics and cooling
 - It's a bigger problem for quench stability
- Avoid quench by adding eg copper stabilizer, but losses go up
- Simply increasing J_c will not solve the problem
- Reducing the width and increasing J_c will help
- Filaments are not the solution, unless twisted
- No need to transpose filaments, if J_c is high enough
- What are the solutions?

Ac Losses: Three possible solutions

- "Twisted" Filaments
 - Requires a double layer YBCO technology
 - Striated YBCO layers
 - Insulating interface
- Low aspect ratio conductor, "3D"
 - 1mm wide CC
 - 10 micron YBCO layer
 - $J_c > 0.1 MA/cm^2$
- High J_c , narrow conductor
 - 1mm wide
 - $-J_c > 5MA/cm^2$

Project Plans and Objectives FY2004

This project aimed to study aspects of the ac losses of BSCCO tapes and YBCO coated conductors.

- 1. Measure ac losses in BSCCO 2223 tapes in the 20-40K temperature regime.
- Assemble predictive equations for the losses in this temperature range
- 3. Determine conductor temperature rises when exposed to large fluctuations in applied field (ie 1T increase in 1second).
- 4. Measure losses on various Coated Conductor samples with actransport currents and ac magnetic fields.
- 5. Magnetic ac loss measurements of YBCO films in perpendicular fields
- 6. Measure of losses with fields at various angles to the conductor
- 7. Study conductor interaction (stacks, arrays) on ac losses.
- 8. Develop lower loss conductors
- 9. Study cryo-stabilization of coated conductors under ac conditions

Performance FY2004

- AC Losses has the potential to severely limit the application of CC.
- This year, and next, none of our goals are as important as understanding and reducing the ac losses.
- Plan evolved losses in CC became our sole focus

Performance FY2004

- 1. Measure ac losses in BSCCO 2223 tapes in the 20-40K temperature regime.
- 2. Assemble predictive equations for the losses in this temperature range
- 3. Determine conductor temperature rises when exposed to large fluctuations in applied field (ie 1T increase in 1second).
- 4. Measure losses on various Coated Conductor samples with ac transport currents and ac magnetic fields.
- 5. Magnetic ac loss measurements of YBCO films in perpendicular fields
- 6. Measure of losses with fields at various angles to the conductor
- 7. Study conductor interaction (stacks, arrays) on ac losses.
- 8. Develop lower loss conductors
- 9. Study cryo-stabilization of coated conductors under ac conditions

Plans and Goals FY 2005

Not to present this talk to you next year!

- Present it in "wire session"
- AC loss reduction a central part of coated conductor development

2. Develop and test conductor architecture

- Capable of carrying 100A/cm width ac current in 100mT ac field without quenching (present limit is 10mT)
- Capable of carrying 100A/cm width ac current in 10mT ac field with ac losses TWO orders of magnitude below present values.

3. Develop and test a conductor production technique (lengths > 10cm)

- Capable of carrying 100A/cm width ac current in greater than 10mT ac field without quenching.
- Capable of carrying 100A/cm width ac current in 10mT ac field with ac losses ONE order of magnitude below present values.

4. Priorities

- ➤ High Jc, 1mm wide tapes (Jc>3MA/cm²)
- "3D" CC (1mm wide, 10um thick)
- Double layer technology

Research Integration

- Coated conductor materials in collaboration with
 - LANL IBAD team
 - IGC-Superpower
- Air Force funded STTR Collaboration (Long Electromagnetic Industries)
- DARPA funded program
 - American Superconductor Corporation
 - Office of Naval Research

